skip to main content


Search for: All records

Creators/Authors contains: "Landis, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Input of organic matter into stream channels is the primary energy source for headwater ecosystems and ultimately carbon to the oceans and hence is an important component of the global carbon cycle. Here, we quantify organic‐rich fine sediment mobilization, transport, and storage in a Strahler fourth‐order stream during individual intermediate‐sized storm events. By combining measurements of fallout radionuclides (FRNs)7Be and210Pb and stable water isotopes with a conceptual model of suspended load trapping by channel margins, we find that the channel bed was consistently a source of suspended load to the channel margins. Relative to storage on the channel margins, suspended load export increased through the spring and summer, perhaps related to the in‐channel decomposition of organic debris as indicated by its FRN exposure age and changing bulk δ13C composition. Trapping of suspended load by riparian margins limits sediment transport distances, which, given sufficient discharge to fully suspend the load, is nearly independent of stream discharge for sub‐bankfull discharges. Limited data indicate that the fractional size of the channel margins where trapping occurs decreases with increasing watershed area. Increasing transport length and decreasing fractional margin area with increasing watershed area results in a systematic downstream decoupling of the channel from local terrestrial organic matter exchange. These findings provide a framework for understanding suspended load dynamics in formerly glaciated regions where sediment production and fluxes are generally low and thus the annual input of organic debris is a major component of suspended load budget.

     
    more » « less
  2. Accurate and precise analyses of oil and gas (O&G) wastewaters and solids ( e.g. , sediments and sludge) are important for the regulatory monitoring of O&G development and tracing potential O&G contamination in the environment. In this study, 15 laboratories participated in an inter-laboratory comparison on the chemical characterization of three O&G wastewaters from the Appalachian Basin and four solids impacted by O&G development, with the goal of evaluating the quality of data and the accuracy of measurements for various analytes of concern. Using a variety of different methods, analytes in the wastewaters with high concentrations ( i.e. , >5 mg L −1 ) were easily detectable with relatively high accuracy, often within ±10% of the most probable value (MPV). In contrast, often less than 7 of the 15 labs were able to report detectable trace metal(loid) concentrations ( i.e. , Cr, Ni, Cu, Zn, As, and Pb) with accuracies of approximately ±40%. Despite most labs using inductively coupled plasma mass spectrometry (ICP-MS) with low instrument detection capabilities for trace metal analyses, large dilution factors during sample preparation and low trace metal concentrations in the wastewaters limited the number of quantifiable determinations and likely influenced analytical accuracy. In contrast, all the labs measuring Ra in the wastewaters were able to report detectable concentrations using a variety of methods including gamma spectroscopy and wet chemical approaches following Environmental Protection Agency (EPA) standard methods. However, the reported radium activities were often greater than ±30% different to the MPV possibly due to calibration inconsistencies among labs, radon leakage, or failing to correct for self-attenuation. Reported radium activities in solid materials had less variability (±20% from MPV) but accuracy could likely be improved by using certified radium standards and accounting for self-attenuation that results from matrix interferences or a density difference between the calibration standard and the unknown sample. This inter-laboratory comparison illustrates that numerous methods can be used to measure major cation, minor cation, and anion concentrations in O&G wastewaters with relatively high accuracy while trace metal(loid) and radioactivity analyses in liquids may often be over ±20% different from the MPV. 
    more » « less